Automatisieren von Fehlerrechnung¶
- Gesucht: Unsicherheit von $f(x_1, \dots x_m)$, wenn $x_i$ Unsicherheiten haben
- Gaußsche Fehlerfortpflanzung:
$$ \sigma_{f} = \sqrt{\sum_{i=1}^m \left( \frac{\partial f}{\partial x_i}\right)^{\!2} \sigma_{x_i}^2} $$
- Manuelle Fehlerfortpflanzung:
- Berechne die Ableitungen von $f$ nach allen fehlerbehafteten Größen $x_i$
- Ableitungen in die obere Formel einsetzen
- Werte und Unsicherheiten der $x_i$ einsetzen
- Probleme:
- Kompliziert, dauert lange, man macht oft Fehler
- Falsches Ergebnis, wenn $x_i$ korreliert sind, dann erweiterte Fehlerfortpflanzung:
$$ \sigma_{f} = \sqrt{\sum_{i=1}^m \left( \frac{\partial f}{\partial x_i}\right)^{\!2} \sigma_{x_i}^2 + \sum_{j\neq k} \frac{\partial f}{\partial x_j} \frac{\partial f}{\partial x_k} \operatorname{cov}(x_j, x_k)} $$
$\operatorname{cov}(x_j, x_k)$ sind die Einträge der Kovarianzmatrix und beschreiben die Korrelation zwischen den Unsicherheiten von $x_j$ und $x_k$
konkret für zwei Messgrößen x, y, die $N$ mal gemessen wurden:
$$ \operatorname{cov}(x, y) = \frac{\sum_{i = 1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{N} $$
uncertainties
¶
- Erlaubt es, Fehlerrechnung automatisch durchzuführen
- Datentyp:
ufloat
, repräsentiert Wert mit Unsicherheit
from uncertainties import ufloat
x = ufloat(5, 1)
y = ufloat(3, 1)
x + y
Korrelationen werden von uncertainties beachtet:
x = ufloat(3, 1)
y = ufloat(3, 1)
print(x - y)
print(x - x) # error is zero!
print(x == y)
uncertainties.unumpy
ergänzt numpy:
import numpy as np
import uncertainties.unumpy as unp
x = [1, 2, 3, 4, 5]
err = [0.1, 0.3, 0.1, 0.8, 1.0]
y = unp.uarray(x, err)
unp.cos(unp.exp(y))
Man muss daran denken, jetzt die Funktionen aus unumpy zu benutzen (exp
, cos
, etc.)
np.cos(x)
Zugriff auf Wert und Standardabweichung mit n
und s
:
x = ufloat(5, 1)
print(x.n)
print(x.s)
Bei unumpy
mit nominal_values
und std_devs
x = unp.uarray([1, 2, 3], [0.3, 0.3, 0.1])
print(unp.nominal_values(x))
print(unp.std_devs(x))
Kann man natürlich auch im import abkürzen:
from uncertainties.unumpy import nominal_values as noms, std_devs as stds
print(noms(x))
print(stds(x))
Korrelierte Werte¶
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (8, 4)
plt.rcParams["font.size"] = 16
x = np.array([90, 60, 45, 100, 15, 23, 52, 30, 71, 88])
y = np.array([90, 71, 65, 100, 45, 60, 75, 85, 100, 80])
fig, ax = plt.subplots(1, 1, layout="constrained")
ax.plot(x, y, "ro")
ax.set_xlabel("x")
ax.set_ylabel("y");
Wir vermuten eine lineare Korrelation der Messwerte und stützen die Hypothese mit dem Korrelationskoeffizient:
$$r = \frac{cov(x, y)}{\sigma_x \sigma_y}, \quad -1 \leq r \leq 1$$
x_mean = np.mean(x)
y_mean = np.mean(y)
dx = x - x_mean
dy = y - y_mean
corr_coeff = np.sum(dx * dy) / np.sqrt(np.sum(dx**2) * np.sum(dy**2))
print(corr_coeff)
Korrelation zwischen Variablen mit correlated_values
erzeugen:
from uncertainties import correlated_values
values = [1, 2]
cov = [[0.5, 0.25], [0.25, 0.2]]
x, y = correlated_values(values, cov)
Vorsicht bei Fits:¶
Korrelierte Fit-Parameter führen zu nichts-sagenden Ergebnissen. Kontrolle: Korrelationsmatrix.
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (10, 8)
plt.rcParams["font.size"] = 16
from scipy.optimize import curve_fit
from uncertainties import correlated_values, correlation_matrix
rng = np.random.default_rng()
def f1(x, a, phi):
return a * np.cos(x + phi)
def f2(x, a, b):
return a * np.cos(x) + b * np.sin(x)
x = np.linspace(0, 4 * np.pi, 15)
y = 5 * np.sin(x) + 5 * np.cos(x) + rng.normal(0, 0.8, 15)
params1, cov1 = curve_fit(f1, x, y)
params2, cov2 = curve_fit(f2, x, y)
params1 = correlated_values(params1, cov1)
params2 = correlated_values(params2, cov2)
x_plot = np.linspace(0, 4 * np.pi, 1000)
fig, ax = plt.subplots(1, 1, layout="constrained")
ax.plot(x, y, "k.")
ax.plot(x_plot, f1(x_plot, *noms(params1)), label="f1", lw=2)
ax.plot(x_plot, f2(x_plot, *noms(params2)), "--", label="f2", lw=2)
ax.legend()
fig, (ax1, ax2) = plt.subplots(2, 1, layout="constrained")
print(correlation_matrix(params1))
print(correlation_matrix(params2))
mat1 = ax1.matshow(correlation_matrix(params1), cmap="RdBu_r", vmin=-1, vmax=1)
mat2 = ax2.matshow(correlation_matrix(params2), cmap="RdBu_r", vmin=-1, vmax=1)
fig.colorbar(mat1, ax=ax1)
fig.colorbar(mat2, ax=ax2);
Vorsicht¶
Man kann keine ufloat
s plotten:
x = np.linspace(0, 10)
y = unp.uarray(np.linspace(0, 5), 1)
fig, ax = plt.subplots(1, 1, layout="constrained")
# ax.plot(x, y, 'rx')
ax.errorbar(x, unp.nominal_values(y), yerr=unp.std_devs(y), fmt="rx");
SymPy¶
- Kann Ableitungen automatisch generieren
SymPy importieren:
import sympy
Mathematische Variablen erzeugen mit var()
:
x, y, z = sympy.var("x y z")
x + y + z
Differenzieren mit diff()
:
f = x + y**3 - sympy.cos(z) ** 2
print(f)
print(f.diff(x))
print(f.diff(y))
print(f.diff(z))
print(f.diff(z, z, z))
Eine Funktion, die automatisch die Fehlerformel generiert:
import sympy
def error(f, err_vars=None):
from sympy import Symbol, latex
s = 0
latex_names = dict()
if err_vars is None:
err_vars = f.free_symbols
for v in err_vars:
err = Symbol("latex_std_" + v.name)
s += f.diff(v) ** 2 * err**2
latex_names[err] = "\\sigma_{" + latex(v) + "}"
return latex(sympy.sqrt(s), symbol_names=latex_names)
E, q, r = sympy.var("E_x q r")
f = E + q**2 * r
print(f)
print(error(f))
print()
$$f= E + q^2 r \quad\rightarrow\quad \sigma_f = \sqrt{\sigma_{E_{x}}^{2} + 4 \sigma_{q}^{2} q^{2} r^{2} + \sigma_{r}^{2} q^{4}}$$